您的浏览器版本过低,为保证更佳的浏览体验,请点击更新高版本浏览器

以后再说X

欢迎访问瑞昌明盛自动化设备有限公司网站!

图片名

全国订购热线:
+86 15270269218E-mail:xiamen2018@foxmail.com

主页 > 产品中心 > HONEYWELL

HONEYWELL

ABB >>

A-B>>

GE>>

BENTLY>>

HONEYWELL CC-TAIN01控制器模块

HONEYWELL CC-TAIN01控制器模块

HONEYWELL CC-TAIN01控制器模块减少产生干扰曲线的机会如果要求电机驱动高惯性负载,则加速时间超过安全失速时间是完全可能的,也是可以接受的(记住,锁定转子的情况不同于加速情况)。在这种情况下,必须知道热极限曲线的每个不同部分,并且必须根据该曲线协调保护。保护电机的继电器必须能够区分转子锁定状态、加速状态和运行状态。469电压相关过载曲线功能专门用于保护这些类型的电机。在电机启动期间持...

  • 功能特性
  • 参数规格
  • 视频
  • 应用案例
  • 下载

HONEYWELL CC-TAIN01控制器模块

    HONEYWELL CC-TAIN01控制器模块

    减少产生干扰曲线的机会如果要求电机驱动高惯性负载,则加速时间超过安全失速时间是完全可能的,也是可以接受的(记住,锁定转子的情况不同于加速情况)。在这种情况下,必须知道热极限曲线的每个不同部分,并且必须根据该曲线协调保护。保护电机的继电器必须能够区分转子锁定状态、加速状态和运行状态。469电压相关过载曲线功能专门用于保护这些类型的电机。在电机启动期间持续监测电压,并相应调整加速热极限曲线。电压相关过载曲线由失速或锁定转子状态、加速度和运行过载确定的三种热极限曲线特征形状组成。通过输入运行过载保护曲线的自定义曲线形状来构建曲线。接下来,必须根据最小允许线路电压定义的最小允许启动电压,在与自定义曲线相交的点处为加速度保护曲线输入一个点。还必须输入该电压的锁定转子电流和安全失速时间。必须输入100%线路电压的第二个交点。再次,必须输入锁定转子电流和安全失速时间,这一次是100%线路电压。根据最小允许线路电压和100%线路电压之间的测量线路电压,从安全失速时间和交叉点创建的保护曲线将是动态的。这种保护方法与阻抗继电器一样,固有地考虑了电机速度的变化。阻抗的变化由电机端子电压和线路电流反映。对于任何给定的速度和任何给定的线路电压,只有一个线路电流值。图4-8:高惯性负载的热极限1 123 456 78 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100高惯性负载过载曲线8800 HP,13.2 kV,反应堆冷却剂泵GE多线跳闸时间(秒)多个满载安培200 300 400 500 600 700 900 1000 1 2 3 4 6 5 1-运行过载热极限2-80%V 3时的加速热极限-100%V 4时的加速温度极限-锁定转子热极限5-80%V 6时的电机加速曲线-100%V 806821A4.CDR g 4-36 469电机管理继电器GE多行4.6 S5热模型4设定值4为了说明电压相关过载曲线特性,将使用图4–8:高惯性负载热极限的热极限。1.构建运行过载热极限的自定义曲线。如果曲线未延伸到加速热极限,则将其延伸,使曲线与加速热极限曲线相交(请参见下面的自定义曲线)。2.输入加速度过载曲线与80%线路电压的自定义曲线相交的单位电流值。同时输入80%线路电压的每单位电流和安全失速保护时间(见下面的加速曲线)。3.输入加速度过载曲线与100%线路电压的自定义曲线相交的单位电流值。同时输入100%线路电压的单位电流和安全失速保护时间(见下面的加速曲线)。13.2 kV,反应堆冷却剂泵跳闸时间(秒)多个满载安培200 300 400 500 600 700 800 900 1000加速度相交于80%V加速度相交于100%V GE Multilin 806823A4。DR GE Multilin 469电机管理继电器4-37 4设定值4.6 S5热模型4 469采用所提供的信息,为最小值和100%之间的任何电压创建保护曲线。

    reduce the chance of nuisance CURVE If the motor is called upon to drive a high inertia load, it is quite possible and acceptable that the acceleration time exceeds the safe stall time (bearing in mind that a locked rotor condition is different than an acceleration condition). In this instance, each distinct portion of the thermal limit curve must be known and protection must be coordinated against that curve. The relay that is protecting the motor must be able to distinguish between a locked rotor condition, an accelerating condition and a running condition. The 469 Voltage Dependent Overload Curve feature is tailored to protect these types of motors. Voltage is continually monitored during motor starting and the acceleration thermal limit curve is adjusted accordingly. The Voltage Dependent Overload Curve is comprised of the three characteristic shapes of thermal limit curves as determined by the stall or locked rotor condition, acceleration, and running overload. The curve is constructed by entering a custom curve shape for the running overload protection curve. Next, a point must be entered for the acceleration protection curve at the point of intersection with the custom curve, based on the minimum allowable starting voltage as defined by the minimum allowable line voltage. The locked rotor current and safe stall time must also be entered for that voltage. A second point of intersection must be entered for 100% line voltage. Once again, the locked rotor current and the safe stall time must be entered, this time for 100% line voltage. The protection curve created from the safe stall time and intersection point will be dynamic based on the measured line voltage between the minimum allowable line voltage and the 100% line voltage. This method of protection inherently accounts for the change in motor speed as an impedance relay would. The change in impedance is reflected by motor terminal voltage and line current. For any given speed at any given line voltage, there is only one value of line current. Figure 4–8: THERMAL LIMITS FOR HIGH INERTIAL LOAD 1 123 456 78 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 HIGH INERTIA LOAD OVERLOAD CURVES 8800 HP, 13.2 kV, REACTOR COOLANT PUMP GE Multilin TIME TO TRIP (SECONDS) MULTIPLES OF FULL LOAD AMPS 200 300 400 500 600 700 800 900 1000 1 2 3 4 6 5 1- Running Overload Thermal Limit 2- Acceleration Thermal Limit at 80%V 3- Acceleration Thermal Limit at 100%V 4- Locked Rotor Thermal Limit 5- Motor Acceleration Curve at 80% V 6- Motor Acceleration Curve at 100%V 806821A4.CDR g 4-36 469 Motor Management Relay GE Multilin 4.6 S5 THERMAL MODEL 4 SETPOINTS 4 To illustrate the Voltage Dependent Overload Curve feature, the thermal limits of Figure 4–8: Thermal Limits for High Inertial Load will be used. 1. Construct a custom curve for the running overload thermal limit. If the curve does not extend to the acceleration thermal limits, extend it such that the curve intersects the acceleration thermal limit curves (see the Custom Curve below). 2. Enter the per unit current value for the acceleration overload curve intersect with the custom curve for 80% line voltage. Also enter the per unit current and safe stall protection time for 80% line voltage (see the Acceleration Curve below). 3. Enter the per unit current value for the acceleration overload curve intersect with the custom curve for 100% line voltage. Also enter the per unit current and safe stall protection time for 100% line voltage (see the Acceleration Curve below).  13.2 kV, REACTOR COOLANT PUMP TIME TO TRIP (SECONDS) MULTIPLES OF FULL LOAD AMPS 200 300 400 500 600 700 800 900 1000 Acceleration intersect at 80%V Acceleration Intersect at 100%V GE Multilin 806823A4.CDR GE Multilin 469 Motor Management Relay 4-37 4 SETPOINTS 4.6 S5 THERMAL MODEL 4 The 469 takes the information provided and create protection curves for any voltage between the minimum and 100%.

    2022.12.9.jpg

    2022.11.29.jpg

    手机轮播图2(1)_副本.jpg

    公司简介_副本.jpg



    品牌:HONEYWELL 

    型号:CC-TAIN01 

    质保:365天

    成色:全新/二手

    发货方式:快递发货


图片名 客服

在线客服 客服一号