您的浏览器版本过低,为保证更佳的浏览体验,请点击更新高版本浏览器

以后再说X

欢迎访问瑞昌明盛自动化设备有限公司网站!

图片名

全国订购热线:
+86 15270269218E-mail:xiamen2018@foxmail.com

ABB >>

A-B>>

GE>>

BENTLY>>

MVME2306机器人模块卡件

MVME2306机器人模块卡件

MVME2306机器人模块卡件混凝土劣化问题包括但不限于碱硅酸反应、延迟钙矾石形成、碳化、腐蚀钢筋周围的纵向裂缝以及钢筋位置的层状裂缝。现有混凝土基底的强度是粘结关键应用的重要参数,包括弯曲或剪切加固。基材应具有必要的强度,以通过粘结形成FRP系统的设计应力。基底,包括修复区域和原始混凝土之间的所有粘结表面,应具有足够的直接拉伸和剪切强度,以将力传递到FRP系统。对于键合关键应用,抗拉强度应至少为...

  • 功能特性
  • 参数规格
  • 视频
  • 应用案例
  • 下载

MVME2306机器人模块卡件

    MVME2306机器人模块卡件

    混凝土劣化问题包括但不限于碱硅酸反应、延迟钙矾石形成、碳化、腐蚀钢筋周围的纵向裂缝以及钢筋位置的层状裂缝。现有混凝土基底的强度是粘结关键应用的重要参数,包括弯曲或剪切加固。基材应具有必要的强度,以通过粘结形成FRP系统的设计应力。基底,包括修复区域和原始混凝土之间的所有粘结表面,应具有足够的直接拉伸和剪切强度,以将力传递到FRP系统。对于键合关键应用,抗拉强度应至少为200 psi(1.4 MPa),通过根据ICRI 210.3R或ASTM C1583/C1583M使用拉脱式附着力测试确定。当混凝土基底的抗压强度fc′小于2500 psi(17 MPa)时,不得使用FRP系统。接触临界应用,例如仅依赖于FRP系统和混凝土之间紧密接触的约束柱包裹,不受这些最小值的约束。FRP系统中的设计应力是通过接触临界应用中混凝土截面的变形或膨胀产生的。FRP系统的应用不会阻止现有钢筋的持续腐蚀(El Maaddwy等人,2006)。如果钢腐蚀明显或正在使混凝土基底劣化,则不建议在不阻止持续腐蚀和修复基底劣化的情况下放置FRP钢筋。第2章-注释和定义2.1-旋转Ac=受压构件中混凝土的横截面积, (毫米)分贝ℓ = 受限塑料铰链中纵向钢的直径,英寸。(mm)df=FRP受弯钢筋的有效深度,in。(mm)dfv=FRP抗剪钢筋的有效深度,in。(mm)di=第i层纵向钢筋形心至横截面几何形心的距离,英寸。(mm)dp=从极限压缩纤维到预应力钢筋质心的距离,英寸。(mm)E2=FRP约束混凝土应力-应变模型线性部分的斜率,psi(MPa)Ec=混凝土弹性模量,psi(MPa)Ef=FRP的拉伸弹性模量,磅/平方英寸(MPa)Eps=预应力钢的弹性模量,MPa(MPa)Es=钢的弹性模数,psi(兆帕)Es=预应力钢相对于支撑构件形心轴的偏心率,在里面(mm)em=预应力钢相对于跨中构件形心轴的偏心率,in。

    (mm)fc=混凝土中的抗压应力,psi(MPa)fc′=混凝土的规定抗压强度,psi(MPa)fcc′=约束混凝土的抗压强度,磅/平方英寸(MPa)fco′=无约束混凝土的压缩强度;也等于0.85fc′,psi(MPa)fc,s=使用条件下混凝土的压缩应力,psi(MPa)ff=FRP钢筋的应力,磅/平方英寸(MPa)美国混凝土协会–版权所有©材料–www.concrete。org用于加固混凝土结构的外粘结FRP系统(ACI 440.2R-17)7 ffd=外粘结FRP钢筋的设计应力,psi(MPa)ffe=FRP中的有效应力;截面破坏时获得的应力,psi(MPa)ff,s=构件弹性范围内力矩引起的FRP应力,si(MPa)ffu=FRP的设计极限抗拉强度,psi(MPa)ffu*=制造商报告的FRP材料的极限抗拉强度,psi(MPa)fps=标称强度下预应力钢筋中的应力,psi(MPa,psi(MPa)fsi=第i层纵向钢筋中的应力,psi(MPa)fs,s=非预应力钢筋在工作荷载下的应力,psi(MPa)g=FRP护套和相邻构件之间的净间隙,in(mm)h=构件的总厚度或高度,in。(mm)=矩形受压构件的长边横截面尺寸,in。(mm)hf=构件法兰厚度,in。(mm)hw=从底部到顶部的整个墙的高度,或考虑的墙段或墙墩的净高,英寸。(mm)Icr=转化为混凝土的开裂截面的惯性矩,in。4(mm4)Itr=转换为混凝土的无裂缝截面的惯性矩,in。4(mm4)K=中性轴深度与从极限压缩纤维测量的钢筋深度之比k1=应用于κv的修正系数,以说明混凝土强度k2=应用于K v的修正因子,以说明包裹方案kf=FRP钢筋每层单位宽度的刚度,lb/in。(N/mm);kf=Eftf Le=FRP层压板的有效粘结长度,in。(mm)Lp=塑料铰链长度,in。(mm)Lw=剪力墙长度,in。(毫米)ℓdb=近表面安装FRP筋的延伸长度,英寸。(毫米)ℓd、 E=FRP锚固包裹的长度,英寸。(毫米)ℓdf=FRP系统的延伸长度,英寸。(毫米)ℓo=从接缝表面沿构件轴线测量的长度,必须在其上提供特殊的横向钢筋,英寸。(毫米)ℓprov=钢搭接接头的长度,英寸。(mm)Mcr=开裂力矩,in-lb(N-mm)Mn=标称弯曲强度,in-lb(N-mm)Mnf=FRP钢筋对标称弯曲强度的贡献,lb in。(N-mm)Mnp=预应力钢筋对标称弯曲强度的贡献,lb in。(N-mm)Mns=钢筋对标称抗弯强度的贡献,lb in。(N-mm)Ms=截面处的工作力矩,in-lb(N-mm)Msnet=减压后截面的工作力矩,in-lb(N-mm)Mu=截面处的系数力矩,in-lb(N-mm)N=FRP钢筋层数nf=FRP与混凝土之间的弹性模量比=Ef/Ec ns=钢与混凝土之间弹性模量比=Es/Ec Pe=预应力钢筋的有效力(考虑所有预应力损失后),lb(N)Pn=混凝土截面的标称轴向抗压强度,lb(N)Pu=系数轴向荷载,lb(N)pfu=每层FRP钢筋每单位宽度的平均抗拉强度,lb/in。(N/mm)pfu*=极限抗拉强度

    Concrete deterioration problems include, but are not limited to, alkali silica reaction, delayed ettringite formation, carbonation, longitudinal cracks around corroded reinforcement, and layered cracks at reinforcement locations. The strength of the existing concrete substrate is an important parameter for bond critical applications, including bending or shear strengthening. The base material shall have the strength necessary to develop the design stress of the FRP system by bonding. The substrate, including all bonded surfaces between the repaired area and the original concrete, shall have sufficient direct tensile and shear strength to transmit the force to the FRP system. For bonding critical applications, the tensile strength shall be at least 200 psi (1.4 MPa), as determined by using a pull off adhesion test in accordance with ICRI 210.3R or ASTM C1583/C1583M. The FRP system shall not be used when the compressive strength fc ′ of the concrete substrate is less than 2500 psi (17 MPa). Contact critical applications, such as confined column wraps that rely only on close contact between the FRP system and the concrete, are not constrained by these minimum values. Design stresses in FRP systems are generated by deformation or expansion of concrete sections in contact critical applications. The application of the FRP system does not prevent continued corrosion of existing reinforcement (El Maaddwy et al., 2006). If the steel corrosion is obvious or is deteriorating the concrete substrate, it is not recommended to place FRP reinforcement without preventing continuous corrosion and repairing the deterioration of the substrate. Chapter 2 - Notes and Definitions 2.1 - Rotational Ac=cross-sectional area of concrete in compression members, (mm) decibels ⏹=diameter of longitudinal steel in confined plastic hinges, inches. (mm) df=effective depth of FRP flexural reinforcement, in. (mm) dfv=effective depth of FRP shear reinforcement, in. (mm) di=distance from centroid of longitudinal reinforcement in layer i to geometric centroid of cross section, in. (mm) dp=distance from the ultimate compressive fiber to the centroid of the prestressing reinforcement, inches. (mm) E2=slope of the linear part of the stress-strain model of FRP confined concrete, psi (MPa) Ec=modulus of elasticity of concrete, psi (MPa) Ef=tensile modulus of elasticity of FRP, pounds per square inch (MPa) Eps=modulus of elasticity of prestressed steel, MPa (MPa) Es=modulus of elasticity of steel, psi (MPa) Es=eccentricity of the prestressed steel relative to the centroidal axis of the supporting member, in which (mm) em=eccentricity of the prestressed steel relative to the centroidal axis of the midspan member, in。

    (mm) fc=compressive stress in concrete, psi (MPa) fc ′=specified compressive strength of concrete, psi (MPa) fcc ′=compressive strength of confined concrete, pounds per square inch (MPa) fco ′=compressive strength of unrestrained concrete; It is also equal to 0.85fc ′, psi (MPa) fc, s=compressive stress of concrete under service conditions, psi (MPa) ff=stress of FRP reinforcement, pounds per square inch (MPa) American Concrete Institute – all rights reserved © Materials – www concrete。 Org External bonded FRP system for strengthening concrete structures (ACI 440.2R-17) 7 ffd=design stress of externally bonded FRP reinforcement, psi (MPa) ffe=effective stress in FRP; The stress obtained when the section is broken, psi (MPa) ff, s=FRP stress caused by the moment in the elastic range of the member, si (MPa) ffu=design ultimate tensile strength of FRP, psi (MPa) ffu *=ultimate tensile strength of FRP material reported by the manufacturer, psi (MPa) fps=stress in the prestressed reinforcement under the nominal strength, psi (MPa, psi (MPa) fsi=stress in the longitudinal reinforcement of the ith layer, psi (MPa) fs, S=stress of non prestressed reinforcement under working load, psi (MPa) g=net clearance between FRP sheath and adjacent members, in (mm) h=total thickness or height of members, in. (mm)=cross-sectional dimension of the long side of a rectangular compression member, in. (mm) hf=member flange thickness, in. (mm) hw=height of the entire wall from bottom to top, or the clear height of the wall segment or pier under consideration, in inches. (mm) Icr=moment of inertia of the cracked section converted to concrete, in. 4 (mm4) Itr=moment of inertia of the uncracked section converted to concrete, in. 4 (mm4) K=ratio of neutral axis depth to reinforcement depth measured from ultimate compressive fiber k1=applied to κ The correction factor of v to show that the concrete strength k2=the correction factor applied to K v, to show that the wrapping scheme kf=the stiffness of the unit width of each layer of FRP reinforcement, lb/in. (N/mm); Kf=Eftf Le=effective bonding length of FRP laminate, in. (mm) Lp=plastic hinge length, in. (mm) Lw=length of shear wall, in. (mm) ⏹ db=Extension of near surface mounted FRP bars, inches. (mm) ⏹ d, E=Length of FRP anchorage package, in. (mm) ⏹ df=Extension length of FRP system, inches. (mm) ⏹ o=Length measured from the joint surface along the axis of the member on which special transverse reinforcement must be provided, inches. (mm) ⏹ prov=Length of steel lap joint, inches. (mm) Mcr=cracking moment, in lb (N-mm) Mn=nominal bending strength, in lb (N-mm) Mnf=FRP reinforcement contribution to nominal bending strength, lb in. (N-mm) Mnp=contribution of prestressing reinforcement to nominal bending strength, lb in. (N-mm) Mns=contribution of reinforcement to nominal bending strength, lb in. (N-mm) Ms=working moment at the section, in lb (N-mm) Msnet=working moment at the section after decompression, in lb (N-mm) Mu=coefficient moment at the section, in lb (N-mm) N=number of FRP reinforcement layers nf=elastic modulus ratio between FRP and concrete=Ef/Ec ns=elastic modulus ratio between steel and concrete=Es/Ec Pe=effectiveness of prestressed reinforcement (after considering all prestress losses), lb (N) Pn=nominal axial compressive strength of concrete section, Lb (N) Pu=factored axial load, lb (N) pfu=average tensile strength per unit width of each layer of FRP reinforcement, lb/in. (N/mm) pfu *=ultimate tensile strength

    fa405aeea632aa6912154382925a28b_副本.jpg

    ABB 5SHY4045L0006.jpg

    3BHB005243R0105.jpg

    QQ图片20220408093546.png



    品牌:  Motorola 

    型号:MVME2306 

    产地:美国

    质保:365天

    成色:全新/二手

    发货方式:快递发货


图片名 客服

在线客服 客服一号