主扇风机的节能原理
由流体力学可知,P(功率)=Q(风量)╳ H(压力),风量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,主扇风机控制是借助改变风门开度的大小来调节风量的,其实质是改变管道中气体阻力的大小来改变风量。因为风机的转速不变,其特性曲线保持不变, 当风门全开时,风量为Qa,风机的压头为Ha。若关小风门,管阻特性曲线改变,此时风量为Qb,风机的压头到Hb。则压头的升高量为:ΔHb=Hb-Ha。于是产生了能量损失:ΔPb=ΔHb×Qb。
而借助改变给风机的转速来调节风量,其实质是通过改变所输送气体的能量来改变风量。因为只是转速变化,风门的开度不变,管阻特性曲线也就维持不变。额定转速时风量为Qa,压头为Ha。当转速降低时,特性曲线改变,风量变为Qc。
此时,假设将风量Qc控制为风门控制方式下的风量Qb,则风机的风量将降低到Hc。因此,与风门控制方式相比压头降低了:ΔHc=Ha-Hc。据此可节约能量为:ΔPc=ΔHc×Qb。与风门控制方式相比,其节约的能量为:P=ΔPb+ΔPc=(ΔHb-ΔHc)×Qb。
将这两种方法相比较可见,在风量相同的情况下,转速控制避免了风门控制下因压头的升高和管阻增大所带来的能量损失。在风量减小时,转速控制使压头反而大幅度降低,所以它只需要一个比风门控制小得多的,得以充分利用的功率损耗。 由上述可知,当要求调节风量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即风机电机的耗电功率与转速近似成立方比的关系。
4 雷诺尔高压变频器的特点
RNVH-A系列高压变频器采用多单元串联多电平技术,属于高-高电压源型变频器,可直接6KV/10KV输入,直接6KV/10KV输出。以6KV系列为例,每相由5个功率单元串联,各个功率单元由输入隔离变压器的二次隔离线圈分别供电,输出三相构成Y形,直接给6KV电机供电。
??6KV高压变频器系统拓扑结构图
??
功率单元结构为交-直-交方式,每个功率单元主要由输入熔断器、三相全桥整流器、电容器组、IGBT逆变桥、直流母线和旁通回路构成,同时还包括控制驱动电路。每个单元为三相输入,单相输出的脉宽调制型变频器。其输出的电压状态为1、0、-1,每相五个单元叠加就可以产生11种不同的电压等级。inputs Ai1 and AI2 (i7 and I8) are used to measure carbon dioxide and oxygen respectively. Connect the signal from the sensor to the threshold trigger, and set four for each bank as the upper and lower limits of carbon dioxide and oxygen respectively.
Carbon dioxide removal. When the carbon dioxide value of a storehouse is higher than the set upper limit, the electromagnetic pneumatic valve between the corresponding storehouses will be turned on through the automatic valve station, and the carbon dioxide remover will be started at the same time. Until the CO2 value is below the lower limit.
Oxygenation. With the extension of fruit and vegetable respiration time, carbon dioxide in the storeroom increases and oxygen decreases. When its value is lower than the lower limit, open the electromagnetic (or electric) valve to add oxygen from the atmosphere when removing carbon dioxide. The duration is set by an edge triggered pulse width relay.
Display section. On the screen of the text display TD, it can display: the warehouse number inspected when removal is not car